циркулем

циркулем
см. циркуль; в зн. нареч.

Расставить ноги циркулем (широко)


Словарь многих выражений. 2014.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "циркулем" в других словарях:

  • Циркулем — нареч. качеств. обстоят. 1. Формой напоминая циркуль. 2. Употребляется как несогласованное определение. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • Построение циркулем и линейкой — Построения с помощью циркуля и линейки раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку… …   Википедия

  • Построение разверток тел вращения — Окружающий нас мир динамичен и разнообразен, и далеко не всякий объект можно просто обмерить линейкой. Для подобного переноса используются специальные техники, как то триангуляция. Потребность в составлении сложных развёрток, как правило,… …   Википедия

  • Построение с помощью циркуля и линейки — Построения с помощью циркуля и линейки  раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности: Линейка не имеет делений и имеет сторону бесконечной …   Википедия

  • Квадратура круга — Так называется знаменитая задача: построить квадрат, равновеликий по площади кругу данного радиуса. Эта задача была предметом непрерывного ряда усиленных изысканий греческих математиков и значительно повлияла на поразительные успехи геометрии в… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • МНОГОУГОЛЬНИК — 1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… …   Математическая энциклопедия

  • Построения при помощи циркуля и линейки — Построения с помощью циркуля и линейки раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку… …   Википедия

  • Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий. С помощью… …   Википедия

  • Квадратура — круга. Так называется знаменитая задача: построитьквадрат, равновеликий по площади кругу данного радиуса. Эта задача былапредметом непрерывного ряда усиленных изысканий греческих математиков изначительно повлияла на поразительные успехи геометрии …   Энциклопедия Брокгауза и Ефрона

  • Теорема Штейнера-Понселе — Теорема Штейнера  Понселе  теорема из области геометрических построений, утверждающая, что любое построение, выполнимое на плоскости циркулем и линейкой, можно выполнить одной линейкой, если нарисована хотя бы одна окружность и отмечен… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»